One particle equations for many particle quantum systems : the MCTHDF method

نویسندگان

  • Claude BARDOS
  • Norbert J. MAUSER
چکیده

This contribution is devoted to the mathematical analysis of more or less sophisticated approximations of the time evolution of systems of N quantum particles. New results for the Multiconfiguration Time Dependent Hartree Fock (MCTDHF) method (which cover the material of the talk given by the first author at the “Non linear waves conference in honor of Walter Strauss”) are summarized and compared with the simpler Hartree and Hartree Fock equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization

This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...

متن کامل

Analytical Investigation of Jeffery-hamel Fow with High Magnetic Field and Nano Particle by RVIM

Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method (RVIM) which is an accurate and a rapid convergence method in finding the approximate solution fo...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Groups of Operators for Evolution Equations of Quantum Many-Particle Systems

The aim of this work is to study the properties of groups of operators for evolution equations of quantum many-particle systems, namely, the von Neumann hierarchy for correlation operators, the BBGKY hierarchy for marginal density operators and the dual BBGKY hierarchy for marginal observables. We show that the concept of cumulants (semi-invariants) of groups of operators for the von Neumann eq...

متن کامل

When the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it

In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009